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Mathematical Modeling in Physics and Engineering

The conference Mathematical Modeling in Physicad déngineering —
MMPE’21 is organized by Czestochowa Branch of PoNsathematical Society
jointly with the Department of Mathematics of Czatiowa University
of Technology.

Mathematical modeling is at the core of contemporasearch within a wide
range of fields of science and its applicationse MiMPE’21 focuses on various
aspects of mathematical modeling and usage of ctanpuethods in modern
problems of physics and engineering. The goal & tonference is to bring
together mathematicians and researchers from ghyaid diverse disciplines
of technical sciences. The conference participegpisesent a prominent group of
recognized scientists as well as young researcaedsPhD students. This time we
have speakers from University of Lodz, Technicaivdrsity of KoSice, Gdansk
University of Technology and Czestochowa UniversityTechnology.

This year the conference is organized for the 1igtke. Due to the COVID-19
pandemic the Organizing Committee decided to Huddelvent online to ensure all
participants may meet safely.

Organizers
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APPROXIMATION OF THE RIESZ-CAPUTO FRACTIONAL
DERIVATIVE OF VARIABLE ORDER
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L2Department of Mathematics, Czestochowa Universifiyeghnology,
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ltomasz.blaszczyk@pcz frzysztof.bekus@im.pcz.firzysztof.szajek@put.poznan.pl,
“4wojciech.sumelka@put.poznan.pl

Keywords:Riesz-Caputo derivative, variable order, numericaintegration

In the last few decades, the fractional differdntisuations have become
a relatively flexible modelling tool especially whstrong scale-effect appears [1].
In most applications of the fractional calculuse tbrder of differential/integral

operators is assumed to be fixed along the analysedess. However, new
interesting possibilities arise when we considee trder of the fractional

derivatives or/and integrals not constant over pihecess but to be a spatial
variable functioru(x).

The most common fractional operators studied inliliegature are left-sided
derivatives taking into account a long memory cbtnastic (they accumulate all
the 'historical' data). Recently, several reseascldevelop a theory where both
fractional operators are taken into account, like Riesz—Caputo fractional
derivative [2] or the fractional differential opéva being a composition of the left
and right fractional derivatives [3].

In this work, we are studied the following RieszpG# fractional derivative of
variable order withu depending on space variable [4]

X+0

o D“(”f(x)=%(f_f DX £ () +(=1) YD F(X9) (1)

Operators. D7 and ¢ D2 are well known fractional Caputo derivatives, with

X+/

fixed memory lengtlY and variable orde@r(X) >0, defined as

LD (x) = mj‘; (x=7)" (1) dr (2)
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C Ra(x) — (_1)n X+ _ W\h-a(x)-1 £ (n)
D= ) [ =m0 (3)

During the presentation a few modified classicaharical integration methods,

for the approximate computation of the Riesz-Capdéwivative (1) will be
presented. The proposed methods are based on puginaterpolation. Obtained
numerical results will be compared with the exawts (received by using series
representation of the Riesz-Caputo derivative [Af)ditionally, the experimental
rate of convergence will be estimated for discusggatoximations.

This work is supported by the National Science @emoland under Grant No.
2017/27/B/ST8/00351.
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FAILURES IN OVERLOADED POWER GRIDS

Zbigniew Domanski

Department of Mathematics, Czestochowa Universityeahnology,
Czestochowa, Poland
zbigniew.domanski@im.pcz.pl

Keywords:failure, power grids, statistics

The growing diversity of multicomponent systemsseai questions about the
reliability and yield of these systems under pregiee loadings. From the
operational point of view, the most intriguing ques is how the properties of
individual components combine to produce the oVgmiformance of the system
to which they belong. This question is importantdaese under parallel load units
become overloaded and fail. These failures triggésequent over loadings which
reduce the system performance or eventually leaal ¢atastrophic avalanche of
failures. Such a catastrophe happens because systdiected to an increasing
load begin to fail when the internal load excedusdritical value of less reliable
units.

An important class of multicomponent systems inekigpower grids. Typical
power grids, such as distribution networks, combhtisands of components that
are interconnected according to specified geonsetriEpresented by graphs.
Especially, the small-world topology is reportedpassent and beneficial in large-
scale installations involving nationwide power gyss as well as medium or small
power grids. Particularly, in smart grids of renblgaenergy sources, such as
small-scale photovoltaic systems or small-wind itugb, the small world topology
turns out to be beneficial. For example, networkth wmall-world connectivity
can significantly enhance their robustness agaidgfferent attacks by
a simultaneous increase of the rewiring probabditg average degree.
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Fig. 1. Exemplary small-world networks: from a reguing lattice to a random lattice.

We apply the fibre bundle model to analyse the ésghoad supported by a given
power system when the system’s topology is perturbe collect data necessary
to build statistical models we employ two familie$ graphs, whose nodes
represent components of power grids. Specificallg, use the Watts-Strogatz
model to generate small-world-like networks, wherdee second family involves
the Erdos-Renyi graphs. Each power grid comporeneépresented by a random
variable that reflects the value of load supposaftly by the component. In our
simulations, a sequence of stepwise growing vabfigbe external load gives the
maximal value of load that the given system sustaimd thus allows us to obtain
data for different system sizes and different gsafibue to the simulations, we
have determined numerically effective distributiomd maximal loads in
hypothetical power grids. By fitting discrete dilstitions of maximal loads, we
have found how the random component-load-threshoftissnce the macroscopic
yield of the power grid.
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THE REWARD FOR A GOOD DECISION VS PUNISHMENT FOR
THE WRONG ONE — HOW IT WORKS IN MACHINE LEARNING-
BASED CLASSIFICATION

Andrzej Z. Grzybowski

Department of Mathematics, Czestochowa Universityeahnology,
Czestochowa, Poland
andrzej.grzybowski@pcz.pl

Keywords:ordinal classification, classification error costsgvolutionary learning

Classification problems consist in identifying theost probable class an
instancev (usually represented by its feature vectpibelongs to. Classification
problems are at the core of the field of machinarimg. They have been
researched intensively over the last decadestdrature, one can find great many
different classifiers developed under differentuagstions about the classification
problems as well as by the adoption of differearméng algorithms, e.g. [1], [2].
However, after studying many classification prokdenh different types and nature,
it is clear to the machine-learning community ttiegre is no single classification
algorithm that is superior with all respects and d& datasets [3], a conclusion
analogous to famous no free lunches theorem ithéhary of stochastic search and
optimization [4]. On the other hand, it appearst thame learning algorithms
outperform others for some specific problems antyjoes of data. In this paper we
focus on the ordinal classification problems, peoblems where the class label
(target variable) takes on values in a set C oégmies that exhibit a natural
ordering. We consider multiclass problems, it is tase where the numblerof
classes is greater than 2. Then we hdlie 1) different classification errors with,
possibly, different consequences. To each of tleos®s, it is assigned its specific
error cost (weight) that represents the importasfaés repercussions. An index of
performance of a classifier is defined as the etguewvalue of the classification-
result-cost, and consequently, the learning algorit are aimed at finding
a classifier that minimizes such an index. Howewlre to the fact that the
optimality criterion cannot be expressed by anysetbform-mathematical
expression and the value of the criterion can dmyevaluated for each specific
classifier separately, the minimization problem re@n be solved directly.
Moreover, it implies that when looking for the egfel cost minimum we have to
confine ourselves to gradient-free optimizationmods. Thus in presented studies
global optimization (GO) methods that are basedthnidea of the stochastic
search are proposed to cope with such a task. @eamputer simulations to study
the performance of some popular stochastic glolimization methods as
learning tools for some specific type of ordinahsdification problems. Some

10



Mathematical Modeling in Physics and Engineering

remarks about the impact of the error-cost-matrix the probabilities of
a particular error occurrence are formulated as wel

Based on our simulation results one can conclude among considered GO
algorithms, the Genetic Algorithm (GA) is the beste as a tool for classifier-
learning tasks in the ordinal classification proie The GA performs really well -
the average probability of correct classificatidran instance is about 0.9 and one
hardly can expect a higher frequency of corredtisilens in such uncertain
decision problems. Our simulations show that thpsebabilities of success
decrease when the number of classes increasegathar intuitive observation.
However, it is worth noticing that, in spite of shperhaps natural tendency, the
supremacy of the GA over the remaining learningoi@lgms gets more evident
when the number of classes increases. But one albeubware that in problems
with unequal costs of classification errors, thebabilities of correct classification
are not necessarily the most crucial ones. It isttwemphasizing that, instead,
sometimes it is even more important not to makecifipeclassification errors
(in a given specific problem). In such cases omaikhfocus on the weight matrix -
proper construction of the matrix is of primary ergst in all classification
problems with unequal costs of misclassificationroex. Our simulation
experiments revealed some important facts abounthence of the weight matrix
on the classifier-learning results. The resulit tve have obtained during our
simulations confirm that the proportions betweere tweights of particular
classification errors have a proper impact on thepgrtions between
corresponding probabilities of errors and, agdie, A learning algorithm is the
best with respect to this issue. It was also shawat the weights assigned to
correct classifications are also very importangytinake it easier for the learning
algorithm to lower the probabilities of misclassifiion. Thus, the role of both the
reward and punishment revealed by our results comge machine learning is in
line with the operant-conditioning principle formatéd by Skinner to explain the
human-learning nature, [5].
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SOLVING THE PROBLEM OF THERMAL CONTACT
CONDUCTANCE WITH A TIME DERIVATIVE IN CONJUGATION
CONDITION USING THE POTENTIAL METHOD

Bohdan Kopytkd, Roman Shevchuk

! Department of Mathematics, Czestochowa Universifieahnology,
Czestochowa, Poland
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Consider the strip
S={(s¥: 0 X € T -~o0< xoo}
in the Euclidean spac&” of variables(s, X) (T >0 fixed) and two domains
P={(sR:0s x &€ T -w< x (}
and
SP={(s9: 05 x & T (3< x}

in it, where x=r(s), sI[0, T],is a given function which belongs to the Hélder
classH™?([0,T]), O<a <1 (see, e.g., [1, Ch. I, §1]).
Below we will use the following notationsD,, =(—,r(s)), D, = (r(s),);

C,(R) denotes the Banach space of bounded and contirwmoRs functions with
the norm

||¢||=S;§Rpl¢ &)

if Q is the domain in the spadg? of points (s,X) and Q is the closure of this
domain, thenC™'(Q) (C™'(Q), wherem and| are nonnegative integers, denote

the sets of continuous functions @n(Q) for which there exist continuous partial
derivatives with respect tos and X up to ordersm and I, respectively

(C*(Q=(Q).

12
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Consider the following conjugation problem: find elassical solution
u(s xt), 0< s< i T, XOIR, of the heat equation

ou 10%u o
Mi2%88-0, 5,009, i=1,2 1
3% 2% 608", i 1)

which satisfies the “initial” condition
limu(s x §=¢(%, XIR, (@)

and two conjugation conditions

usr(9-0,)=usn(9+0,9, x s € T (3)

ou Ju
cf(S)E(S (9, 9+ q( 5)&( s(30 ) @
—qz(S)%(s (9+0,9=0, < < € T,

where ¢(x), XOR, a(s), q(9, 9(9, 8 [0, T are given continuous functions;
furthermore, ¢0OC,(R),020,4=20,4=2C and o+q+0g,Z0. Here

u(s r(9-0,1) (%(S, r(s)—O,t)j and u(s r(9+0,1) (%(S, r(s)+0,t)j denote

the limits of the functionu(s, x 1) (?(s, x,t)j at (s,r(s)) as the point(s, X
X

tends to(s, r(s)) from the side of the domair®™ and S® respectively.

Note that the problem concerning the classicalaulity of (1)-(4) appears, in
particular, in the theory of diffusion processesewhstudying, by using the
analytical methods, the so-called problem of pastiogether two diffusion
processes on a line (see, e.g., [2] and [3]). ésehand in some other our papers the
described problem is considered (including in aengeneral setting) under the

assumption that the common boundary of the dom&fhsand S is defined by
the relationx=r(s) = r, sl1[0, T], wherer is a positive constant.

Here, the problem (1)-(4) is considered for theeaafscurvilinear domainsg”,
i =1,2, under the condition that # 0.

We prove the following theorem:

Theorem. Assume thatr and ¢ belong to the spaced *#([0,T]) and C,(R)
respectively. Assume also that the functiansg,, ¢, are continuous irsJ[0, T]
and 0>0,¢,20,0,2 0 Then the conjugation problem (1)-(4) has a unique
solution

13
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udCc(S)n CX 9

for which the estimate

lu(s. x Ok 49|

holds, and this solution can be represented irficime

usx9=dsxtW(ydy| ¢sx @) ¥ d

where g is the fundamental solution of the equation {4)js the solution of some
Volterra integral equation of the second kind @n@ a constant.

Furthermore, we prove that, using the solutionhef problem (1)-(4), one can
define the two-parameter Feller semigroup whictcdlees some inhomogeneous

Feller process on a real line. Some additional @riigs of the constructed process
are also studied.
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FRACTIONAL HEAT CONDUCTION IN A COMPOSITE SOLID
CYLINDER SUBJECTED TO A HEAT SOURCE

Stanistaw Kuklal, Urszula Siedlecka

L2Department of Mathematics, Czestochowa Universifyeahinology,
Czestochowa, Poland
Istanislaw.kukla@pcz.plurszula.siedlecka@pcz.pl

Keywords:fractional heat conduction, Caputo derivative

Fractional calculus in mathematical modelling oé theat conduction was
applied in many papers, for instance in the pafied the models with fractional
derivatives were used. The subject of this contidiouis an analysis of the effect of
the derivative fractional order on the temperatdistribution in a cylinder with
a heat source. The object under considerationrigposite cylinder consisting of
inner solid cylinder and an outer concentric lafféig. 1). The heat conduction is
governed by fractional heat equation with the Capute-derivative [1]

0%, (t,r,z)+/1ig (t, r,z)=;1(33 L (tr,2, ZO[0,H, O[r, 4] i= 1)

tlI

where 4 is the thermal conductivityg is the thermal diffusivityg, (t,r,2) is the
volumetric energy generationg denotes the fractional order of the Caputo
derivative [2] with respect to time, O° is the Laplace operator amg=0.

We assume the boundary conditions, the conditibpeidect thermal contact at
interface ¢ =r,) and the initial condition in the following form

A

W

A\W/A

/

Fig. 1. A sketch of the considered finite cylinder

15
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1,(10,2) <eo @

2% =a,(T.()-T(tr.2) 3

I —o, 9N —o, =12 (@)
0z|,., 0zZ|,.,

nnd Tl A =hY ®

T(0r,z)=F(r2), i=12 (6)

where a,, is the heat transfer coefficient aiig is the ambient temperature.
To obtain the fractional equation with a homogerseboundary conditions, we
introduce new functiong, (t,r,z) given as

w2 =T(tna-T(), =12 )

An analytical solution of the boundary-initial pftelm for the functionsy, has
been obtained in the form of double series of digsstions

[

0 (tr2)=338 (OR..(NZ(2, =12 )

m=0 r=1

where R . (r) and Z,(z) are received as solutions of corresponding

eigenproblems,em,n(t) is a solution of the time-fractional non-homogenou

differential equation. Numerical calculations oéttemperature distribution in the
considered cylinder are presented.
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MODELING ELECTRICAL ACTIVITY OF NEURONS

Frank Fernando Llovera Truijillo?, Justyna Signerska-RynkowsKa

1Gdansk University of Technology,
Gdansk, Poland
2Institute of Applied Mathematics, Gdansk Universitilechnology,
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Keywords:Chialvo model, bifurcation, chaos.

The problem of modeling neuronal activity to captand reproduce accurately
neurons behavior has resulted extremely challenditgny models have been
proposed to address this problem, starting fromHbdgkin-Huxley(HH) system,

presented in 1952 in the form of an extremely cemgbur-dimensional phase
space dynamical system, that although can be anesich foundation of neuronal
modeling has a high level of complexity, to mored®am variants such as the
FitzHugh-Nagumo (FHN) or Morris-Lecar (Morris anddar, 1981).

The idea of being able to simplify these modelslbad to experiment with more
simple and treatable discrete-time systems in tinm fof point maps: the map-
based models. Some of the most renowned ones.eirand two dimensions are:
a modified FitzHugh-Nagumo system with a recoveayiable used as a simple
model of excitable neuron generating spikes; Agu@ampos-Pascual-Serrano
model (2006), a map with two different branches rfavdeling spiking-bursting;
Rulkov model (2002) and Courbage-Nekorkin-Vdovin dalo (2007), among
others.

In 1995, Dante R. Chialvo presented a 2D modehfarral excitability ([2]). We
have decided to focus our work in this model, gitleat most of the results related
to it had a numerical or intuitive nature

The model takes the form:
Xn+1 = f(xn:yn) = xrzl exp(yn - xn) +k (13-)

Yn+1 = g(xn'yn) =ay, —bx, +c¢ (1b)

where x is a membrane voltage-potential (the mopbrtant dynamical variable in
all the neuron models) and y is so-called recowasiable. The time-constant
a € (0,1), the activation dependenéee (0,1) and the offset ¢ > O are the real

17
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parameters connected with the recovery procedsirink > 0 can be interpreted
as a time-dependant perturbation of the voltage.

0 100 200 300 400 500 600 700
n-th iteration

B

Figure 1: A trajectory of a 2D- Chialvo model inykphase space (A) and a corresponding voltage
(filled circle) and a recovery- variable (emptyoctd) time plots (B). Parameteris:= 0.03,a =
0.89,b = 0.18,c = 0.28.

The 1-dimensional subsystem:

X1 = f(n,7) = x7 exp(r —xn) + k ()

Wherer € R is a parameter, is called the 1-dimensional (1BjaRo model.
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If b < 1, the system (1a) - (1b) can be seen atow-fast(discrete) system,
where the voltage variable x and the recovery btgigt, can be referred to &sst
and slow variables, respectively. Consequently, whitg describes spiking
behavior,y, acts as a slowly changing parameter (with timéeseariations <« 1)
that modulates the spiking dynamics. Such modeis ma analized by firstly
treating (2) as a quazi-static approximation of) (Lélb) with parameter = y. If
for some values of r (2) exhibits equilibrium dyriesn(due to the existence of
a stable fixed point) and for some other valuexlitibits periodic dynamics (due to
the existence of a stable periodic orbit), thenstiong in the system (1a) - (1b)
occurs because slowly varying, acts as bifurcation parameter that makes the
dynamics of x switching between these two regingmilar approach can be
applied for ODE bursting systems, compare e.g. 8. Therefore bursting
behaviour in the above neuron model is indeed treonnected with the types of
bifurcations present in the fast system (2).

Origin and classification of bursting types in rens (i.e. the repeating episodes
when a few spikes occur in a rapid succession@tbby a quiescence period) is
a significant problem in neurophysiology of neuroirs order to characterize
bursting dynamics of the Chialvo model (1a)-(1bg study the existence and
stability of fixed points and corresponding bifuiioas in one-dimensional Chialvo
model (2), i.e. showing that it produces fold bifation and flip bifurcation, which
next are linked with Izhikevich and Hoppensteadassification of bursting
mappings ([6]).

In particular, we rigorously prove that the systendergoes flip and saddle-node

bifurcations. As an illustration of our results, aleow below how the 1D Chialvo
model undergoes a periodic flip bifurcation whes- 0 atx, = 3 andr, =3 —
In(3).
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3.5
3
25 )

Figure 2: Cobweb diagrams for 1D Chialvo model ard 0 using 150 iterations and initial point
Panel Air = 1.85,x; = 1.5, Panel Br = 3 — In (3) (flip bifurcation value)x; = 4, Panel Cr =
2,xi =15

Finally, we show that a maf(x,, ), independently of the value of parameter r, is
an S- unimodalmap (i.e. a unimodal maps with negative Schwardervative).
Since the theory of such maps is well-developedameeable to prove uniqueness
of attracting periodic orbits and describe chadi&haviour, relevant for the
classification of bursting neurons, with the exaste of the absolutely continuous
invariant probability measure (acip) with negatikgapunov exponent almost
everywhere (for some r values), which can be idiedtiwith some strong
dependence on initial conditions.
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It is about the divergence theorem — a one of thetimportant results in modern
calculus with a wide spectrum of applications. Fexample, the known
Archimedean principle saying that the buoyant faaceng on an object immersed
in a fluid is equal to the weight of the fluid digped by the object, is simply one of
its version (cf. [1]). On the other hand the divarge theorem is just a version of
the Stokes theorem. Its unusualness come fromatti¢hat it deals with a vector
field. Vector fields represent a displacement o€és acting on a physical body. In
practice, the values of the displacement can besuned exactly at the boundary
only. The divergence theorem gives then some irdition on what is going inside.
The vector character of the force makes that mamgrivial boundary conditions
can be formulate when solving a boundary value Iprab For example in the
theory of elastic body there are the four natu@lrglary conditions: Dirichlet,
Absolute, Relative and Neuman (cf. [2]).

Let us introduce some notions and facts thehacessary in formulating the
divergence theorem and its generalizations.

The Cartesian spaceR" is naturally equipped with some additional
structures.

First of all, with the Euclidean scalar product.

For a fixed pointp in R" , the scalar productis a functiong that
subordinates - to any two vectors hookegd aa real number.

With respect to its vector arguments the functson i

(@) bilinear,

(b) symmetric,

(c) positively defined.

In the Cartesian spad®' the canonical scalar product of two vectors is
defined as the sum of products of their coordsiate

Ocan(V,W)=ViW1+. .. +VnWh

The system ofi-vectors of the ordered canonical bas&in
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€1,...6n
is orthonormal with respect to the product g=gd.e.,
g(e.g)= dj (di=0for i# anddi=1 for i=j),

The next natural structure is the Euclidean voldione.

Thevolume forms a functionQ that subordinates to any ordered system
of nvectors hooked ai a real number.

With respect to its vector arguments the functson i

(d) n-linear

(e) skew-symmetric

(f) nondegenerate

In the Cartesian spad®’ the action of canonical volume form aon
vectors is defined as their determinant:

Q car(V1,... Vn)=det{1,... Vi)

i.e., as the determinant of the matrix composethfu@ctors of the system
as its rows (columns).

On the system ofn-vectors of the ordered canonical base
the value of the volume for2 = Q canequals 1, i.e.,

(9) Q(er,...en)=1.
The canonical structureg and Q do not depend on the poipt In the
practical and technical application there is a ngsdo consider g anQ as
functions depending op to expose e.g., inhomogeneity of the investigated
medium (domain, object, material). The only dem#reh is thag should
fulfil the conditions (a)-(c). The demands ©nare then the conditions (d)-
(N and, additionally, the normalizing condition) (dhat should be satisfied
by any suitably ordered base...e\, orthonormal with respect to the given

g.

Assume now that we have a domainn R" equipped with scalar produgt
and a volume fornf2 satisfying conditions (a)-(g). We can define thiee
third structure:

Fix a pointp in D. The vector produds a function that subordinates to
any ordered system of<l)-vectors vi
ViX...XVn.1 also hooked gt as follows:

Fix vectorsn

.....
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defines a linear functional on the linear spacalb¥ectors hooked gi. By
the Riesz theorem the functional is represented bgctor. More explicitly,
there exists a unique vector hookedat call it vix...xvh.1 — representing
the functional, i.e., satisfying

a(v, WX...XVn.1)= Q(V,Wi,... Vn-1).

With respect to its vector arguments the vectodpab is

(h) (n-1)-linear

(i) skew-symmetric.
Moreover,

(j) the vectowix...xvn.1 is g-orthogonal to each of the argumewts . vn.
1,1.e., gl1x...xvn1,Vi)=0, fori=1,...,n-1,

(k) the length Vjx...xvha| of wvix...xvn1 is equal to the (n-1)-
dimensional measure (volume) of the parallelogrgmansied by vectors

.....
.....

.....

Assume now thdD is a bounded domain R" with a smooth boundary
oD. Assume that the considered structugesndQ are defined o [1 oD.
Theng restricts naturally téD. We will denote the restriction by the same
letterg. At the same tim&2 induces the volume for2sp on the boundary
oD as follows. Since, by the assumpti@d is a smooth hypersurface i,
there exist, at everglJoD, exactly one unit outer vector, normal to the
boundary ap. The normal vectors constitute a smooth vector feldD. In
the casedD is a piece-wise smooth only, the field is definaldhost
everywhere oroD what does not influence the integral. In eacheda®
form Qop is defined for almost eveqyL1oD by

.....

.....

Vi,
and only if Qap(va,....
induced oroD by the orientation of DOne can show that:

An ordered orthonormal basig,
induced ondD by the orientation of D if and only if

n=wX...XVn-1.
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One can also show that the restricgedand inducedQsp are then
compatible ondD, i.e., they satisfy the conditions (a)-(g) modifito the
suitable dimension (dirdD = n-1).

LetX be a smooth vector field onlDAéD. Thedivergenceof X, denoted
by div X, is a function defined by

(divX)Q=LxQ

where Lx is the Lie derivative in directioX (cf. [3], Appendix 6).
One can show that in the particular ca@e= Qcan, div X =
OX1/0Xq+ ... +OXnl OXn.
Some more advanced considerations on theg#inee can also be found
in [4].
Now we are ready to state:
The divergence theorem

[divx Q= j g(X, n) Qep.
D oD
Other versions of the theorem and possibléegins will be given.
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The origin of the discovery of Young measures ighie seeking the minima of
integral functionals having non(quasi)convex inggals. One of the first examples
concerning this type of optimization problems atitauted to Oscar Bolza and
Laurence Chisholm Young. Namely, we want to minanthe functional of the
form

2 2
@) =y [vz (&) 1) ]dx' (1)
where the functiorv vanishes at the ends of the interval. The funelfioij is
bounded from below by the zero function, but iniout that this infimum is never
attained. The elements of the sequences minimikiegunctionald are functions
of highly oscillatory nature; they oscillate momdamore wildly around the irjt

Contemporary formulation of this problem is as dols. We look for the
infimum of the bounded from below functional of fioem

J@) = f, f(xv@), V() dx, ®)

where:
- Qs an open, bounded subsefdf with sufficiently smooth boundary;
- v is an element of a suitable (usually Sobolev) gpaof functions on
Q with values in a compact sét c R™;
- frOXR"XR™ > RU{+o} is assumed to satisfy suitable
regularity and growth conditions.
Laurence Chisholm Young proved in [5] that the wdakits of the sequences
of the form mentioned above are in general famitiésprobability measures,
nowadays called théoung measure3hey are usually denoted

vV = (Vi) xeq 3
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where eachv, is a regular countably additive probability measan the set
K c R™ (that is, it belongs to the Banach space (K)).

There are several (not entirely equivalent, butpaitwise disjoint) approaches
to Young measures. One of them, described in [les on regarding Young
measures as weakly* measure- valued mappings

v:Q 3 x > v(x) € rcal (K). 4)

In the presentation we introduce a notion of altstape of an oscillating
function and a notion of m-oscillating function. \lso state state the result which
collectes most of the existing examples of homogeseYoung measures with
densities into its special case.
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In this paper main focus will be paid on the phgkianalysis of the mixing
process and the effect of throat geometry on théngniphenomenon in Venturi gas
mixer by determining the optimal ratio between #irdiameter and it's length
using the open source computational fluid dynamssulation software
OpenFOAM. The main task of a gas mixer is to mixfilel (gas) with air in such
a way, that in the gas engine optimal combustikedelace [1]. To provide an
efficiency combustion process in the industrial gasgyine, the Venturi mixer
should be designed to allow the best possible mixihthe two components, air
and fuel. Additionally it should be compact, withinimum of pressure loss, and
moreover good suction pressure in the throat duked/enturi principle. A lot of
analyzes have been performed to improve the dffigieof the whole mixing
process in a Venturi gas mixer [2, 3, 4]. Howevire influence of some
geometrical parameters have not been analyzedrso @etail, what is important
especially for the manufacturers of such gas mixie@gces. One of such important
geometrical parameter was the throat length, haweihgth impacts the whole
mixing process in a Venturi gas mixer. Therefoneestigations were performed to
determinate the optimal ratio between the throamater (which was set
constantly on@d25mm and its length (fronflOOmm— 200mm using the open
source computational fluid dynamics simulationwafie OpenFOAM.

a) b)
Venturi throat injection hole
@25/ mm]

DI0fmm/

airfgas

mixture
outlet

B50{mm]

fuel ring
Q70[mm]

gas inlet gas inlet
@25[mm] @25/ mm/

Fig. 1. Venturi gas mixer — a) dimensions — b) firgy with six injection holes
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Three different ratios4(1, 6:1, 8:1) has been investigated in this paper. Different
throat lengths are the result of different diffusegles and mixing characteristics
at the outlet of the Venturi throat what has beesented in Figure 2.

100 mm

CH4

‘ ' I 6.237e-02

1 0060276
0.0581/8
0.056081

5.398e-02

Fig. 2. Mixing traces and methane CH4 concentradistribution for different throat lengths — a) 100

mm (Ratio 4:1), b) 150 mm (Ratio 6:1), ¢) 200 mm (R&til)

This numerical analysis showed that the throat gdnof a Venturi gas mixer

influences significantly the mixing characteristi€sfferent diffuser angles causes
different concentration distributions. As shown Higure 2, the longest mixing
trace appears for the greatest throat lergtl200mm. Initially was expected, the
longer the mixing trace, the better the mixing eleggristic in the outlet of the
Venturi gas mixer which turned out not to be tmughis case analysis.
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In this paper we studied the fractional Euler-Bethidoeam equation including
a composition of the left and right fractional Capderivative

‘DY “Diu(x)=F(x) 1)
where
_ (¥
F (X) - fz(a_z)El (2)

We analysed the equation (1) with three types ohdary conditions

u(0)=u(0)=u(Y=u(y=0 3)
u(0)=u(0)=u(y=u(y=o0 (4)
u(0)=u'(0)=u(y=u()=0 (5)

The differential equation is transformed into imedgones, using the assumed
boundary conditions. Exact solutions received fache considered case of
boundary conditions (3) — (5) contain the compositiof the left and right
Riemann-Liouville integral.

Case |. For boundary condition (3) we have thetgwoiu

a

u(x)= 2XL“ K(a +1)(a —2)+%(a - (x=(a+1] L)]( 1518 F(X)

e T (x)|X:L)}+ 1212F (x)

)

(6)

Case Il. For boundary condition (4) the soluti@s khe following form
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u(x) = X

W[((a -1)(a-3)L
+a-1)(a-2)(x=(a+JL))DISHEF (x|, (7)
~L((a+1)(2-a)L+(a =D (x~(a+IL)) D21 F(x)[_ |+ 151 2F (x)
Case lll. For boundary condition (5) we receivieel $olution
x° ax oo f % _ a-ljo £ %
u(x)—F[(T—a—lj 11 fx(x)| | +(L=x)1ete f (x)|X:L} -
=15125F *(x)

0.014

o=1.65

0.0124 o175

0.0104 0=1.85,

o<1.9
0.008+

u) 0195
0.0064

0.004+

0.0024

0 T T T T T
0 0.2 04 0.6 08 1
X

Fig. 1. The exact solution of Eq. (1) with boundeonditions (4) for the functioffx)=1
and parametedls=1,/=1,E=1,and =1.
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Professional programmers need to come to termsthétimeed to know several
programming languages. On the one hand, knowledgeeeral languages can
significantly increase the mental load on the paogner, on the other hand, all
languages have similar syntactic structures, andastics and the standard
language library are a significant difficulty in staring languages [1].

A Domain-Specific Language is a programming languagh a higher level of
abstraction. Unlike low-level languages, which agplicable across different
domains, domain-specific languages (DSLs) spee€ializa particular subject area
[2]. One of the very nice examples of DSL is a lbathanagement language, for
which the semantic approach was formulated in[lg§Ls are considered as small
programming languages with some limited expressigen They are usually
focused on a particular problem domain (possibly Tiering-complete) — for
particular problems, a DSL could be a much morneiefit tool than a general low-
level language. In that sense, they provide mofectfe development than in
general purpose languages. In practice, domainifgpdanguages are often
implemented as an embedded language into someearatiyuage. Furthermore,
the semantics is then expressed in the host laedBGhg

We report here on a semantics of DSL expressingolkmtr coordination
language—a language to help the robot get to thiedegr. An introduction to this
language and some basic ideas about formulatingehetational and operational
semantics were published at [4].

In this contribution, we show how to formulate atlsemantic approaches for
this kind of language and we show the semanticvedpnce for the presented
semantic methods.
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The basis of welding processes is the generatidheo&ppropriate temperature
field by the heat source or sources. Thereforesthding point for modelling and
analyzing thermomechanical states during welding ailways to adopt an
appropriate model of the heat source and desdrdb&mperature field [1-6].

In work, the modelling of a three-dimensional tenapere field in a butt welded
joints of two 6060 aluminium alloy sheets using FE~hite Element Method) is
presented. Welding tests of single pass butt wejdied of 6060 aluminium alloy
sheets were carried out using two methods (in tlgormashield): GTA (Gas
Tungsten Arc) and GMA (Gas Metal Arc).

In computation of temperature field, the Goldaldsilale ellipsoidal heat source
model has been used [7]. The thermal-mechanicgepties of the material were
assumed to depend on the temperature. The WorkbebelsignModeler,
Mechanical, Fluent and CFD-Post modules of the ANS$Yogram were used for
numerical simulations [8-10]. The scheme of singhss butt welding of
aluminium alloy sheets is presented in Fig. 1.

X ﬂelectrode
v ~
N
\} eed.c}
we WQ \\
N}
b No
e

Fig. 1. The scheme of single-pass butt welding ggsc

In the description of the geometry of joints, cifgee elements were used, with
density of grid in the heat affected zone. The Ipalia shapes of face and root
were assumed based on the literature and resultsheof experiment. The
temperature distributions in cross-sections of eglgoints as well as welding
thermal cycles at selected points were analyzed.

33



Mathematical Modeling in Physics and Engineering

In Fig. 2, the temperature distribution during wedd of AI6060 alloy sheet
with the GTA method at time t = 69 s from the begig of welding in the cross-
section is presented.

Temperature

1077

999
| 921
- 842

764
686
607
- 529
- 450
- 372
294

137 [} 0.02 0.04 008
[C] Distance from source [m]
" » . |

Fig. 2. Temperature distribution during weldingAd6060 alloy sheet with the GTA
method at timé = 69 s from the beginning of welding in the crgsstion

In turn, Fig. 3 shows the temperature distributchring welding of Al6060

alloy sheet with the GMA method at time 24 s from the beginning of welding in
the cross-section.

X

Temperature
I 1113
933
2.l
+ 753 e
2l
e
- a
572 et
S
- 392
Distam:e I'mrrl suur::a [m]

|° v e

[C]
Fig. 3. Temperature distribution during weldingAd6060 alloy sheet with the GMA
method at timé = 24 s from the beginning of welding in the crgsstion

The results of numerical simulations were verifiedperimentally. The
comparison of experimental and numerical simulatinpresented in Fig. 4 (for
GTA method) and Fig. 5 (for GMA method).
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Comparison of calculated and obtained in the ermpamt the characteristic
limits of heat affected zones showed satisfactamymatibility. The red color on
the left shows the area in which we reached thep¢eature above the solidus
where the material melts. The difference in dimemsiobtained in the simulation
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Temperature
nar

Fig. 4. The comparison of calculated fusion zoeé)(to the metallographic tests (right)
for GTA welding method

Temperature
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Fig. 5. The comparison of calculated fusion zoeé)(to the metallographic tests (right)
for GMA welding method

with respect to experimental tests is below 5%.

Numerical simulations of the temperature field ialding processes for sheets
made of aluminium alloys allowed to determine thh&dn zone of welded sheets in

the mentioned welding processes.

Numerical simulations of the temperature field ialding processes for sheets

made of aluminium alloys:

allowed to determine the fusion zone of welded &heethe mentioned processes.
The obtained results are the origin point for ta&wlation of strain and stress

butt welded joint made with the GTA method (usingnfaisible (tungsten)
electrode in the Argon shield with the additionaofleposited metal in the

form of a wire),

butt welded joint made with the GMA method (usin@usible electrode in

the Argon shield),

states in the welding processes considered inaperp
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Let | :[a, b] be a closed interval of real axig,p[JR, a<b). The function

¢:1 - R is said to beof bounded variation on the intervdl :[a, b], briefly
f OBV(l), if the quantity

V(1) =supd lelx)-elx..).

T j=1

where the supremum is taken over all partitionsthefintervall , is finite. We
will write CBV(I)for C(1) n BV(l ) whereC(l) denotes the family of real

continuous functions defined dn

Definition. An operator K : CBV(l) - CBV(l) is said to bdocally defined if

for every open intervall 0 R and for all functionsg, @ ICBV(I) the following
implication holds true:

ﬂJ :¢|J :>K(¢)‘J :K(¢)'J-

Theorem 1.If a locally defined operatoK maps CBV(l)into itself, then it is

a Nemytskij composition operator, i.e., there exish unique function
h:1 xR - R such that

K(@)(x) = h(x ¢(x)), ¢OCBV(1),  (xO1) (1)

In the talk we also characterize locally define@mypors acting between the spaces
of functions of bounded variation under the addi#iloassumption that they are
locally bounded or uniformly bounded.

We say that a functionf :[O,l]x R - R satisfies a conditior{ji) if for every
r >0 there exists a constaM, >0 such that for every K IN, every partition
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0=t <..<t <1 of the interval I=[O,1] and every finite sequence

k
Ug, Uy, Uy D[—r,r] with Z|ui _Ui—1| <T, the following inequalities hold:
i=1

g|f(ti U )= flt.u)<M,  and iZ:|f(ti_l,ui)— Flt o uy)<M,.

The Nemytskij composition operatoK : CBV(l) - CBV(l) is said to be
locally boundeglif the image of each bak (B, (0,M ) is bounded inCBV(l).

Theorem 2.1f a locally defined operatoK maps CBV(I)into itself and is
locally bounded then there exists a unique functidn | xR » R satisfying
condition (i) such that (1) is fulfilled.

Conversely, if an operatoK : R' - R' is defined by (1) for some function
h:1 xR - R satisfying condition(ii) of Theorem 2, then the operatfr maps
CBV(l)into itself and is locally defined and locally baled.

Theorem 3 If a locally defined operatdt (with continuous with respect to the
second variable generating functib(lx,[)]: R - R) mapsCBV(l)into itself and
is uniformly bounded, then there exisl([)][]CBV(l) and ,B(D]DCBV(I) such
that

K()(x) = a(x)¢(x) + B(x), ¢OCBV(1),  (xO1).

As a corollary we get that every Lipschitzian orfanmly continuous locally
defined operator acting between the spaces of iimectof bounded Jordan
variation has an affine (in the second variablejegator.
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